超级电容器的结构和特性
电导的条件,一般为纤维结构的电子绝缘材料,如聚丙烯膜。电解液的类型根据电极材料的性质进行选择。 上图中各部分为:(1):聚四氟乙烯载体;(2)(4):活性物质压在泡沫镍集电极上;(3):聚丙烯电池隔膜。 超级的部件从产品到产品可以有所不同。这是由超级电容器包装的几何结构决定的。对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。这些集电极焊盘将被焊接到终端,从而扩展电容器外的路径。 对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。最后将电极箔焊接到终端,使外部的电流路径扩展。 超级电容的特性 超级电容器使用过程中是没有任何的化学反应,也没有高速旋转等运动;对于环境没有污染,也没有任何的噪声;它的结构简单、体积小,是非常理想的储能设备。 超级电容产品具有如下技术特性: (1)充电速度快。充满其额定容量的95%以上仅需10秒~10分钟; (2)循环寿命长。深度充放电循环可达1~50万次,例如,北京合众汇能公司生产的HCC250F/2.7V的超级电容器和北京集星公司生产的系列电容的循环寿命均在50万次以上; (3)能量转换效率高。大电流能量循环效率》90%; (4)功率密度高。可达300W/kg—50000W/kg,为蓄电池的5~10倍; (5)原材料生产、使用、存储及过程均无污染,是理想的绿色环保;安全系数高,长期使用免维护; (6)高充放电效率。由于内阻很小,所以充放电损耗也很小,具有很高的充放电效率,可达90%以上。 (7)温度范围宽。达-40~+70℃。超级电容器电极材料的反应速率受温度影响不大; (8)控制方便。剩余电量可通过公式E=CV2/2直接算出,只需要检测端电压就可以确定所储存的能量,荷电状态(SOC)的计算简单准确,因此易于能量管理与控制。 超级电容器 超级电容器基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。突出优点是功率密度高、充放电时间短、循环寿命长、工作温度范围宽,是世界上已投入量产的双电层电容器中容量最大的一种。 根据储能机理的不同可以分为以下两类: 1、双电层电容: 是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙而产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中呈电中性,这便是双电层电容的充放电原理。 2、法拉第准电容: 其理论模型是由Conway首先提出,是在电极表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH-、K+或Li+)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放理。 来源:十万个为什么 审核编辑:何安欧普